
ProVision-vRA-Plugin

Current Plugin Release Version: 3.6.21

Overview
The IPAM Service provider consists of:

Endpoint type definition which must be registered with vRealize Automation
One or more endpoints that connect to a backend ProVision system
Network profiles that are associated with endpoints

During a typical VM lifecycle, vRealize Automation calls the ProVision IPAM SDK API endpoints that must provide required data as a return value.

Requirements
6connect ProVision - requires ProVision 5.3 or above

VMware Compatibility - vRealize 7.1 or above

Functionality

Get Address Space

This workflow returns a list of resource entries (Section: Resource Holder, Category: Address Space) in the ProVision. Each tenant in the
vRealize Automation can have one or more address space. The parent of all address spaces is a tenant root resource.

Get IP Ranges

Returns all the IP ranges that that are assigned to the selected address space. These IP Ranges are then assigned to the network profile.
Further differentiation within all the ranges is done by specifying the search tags, passed via the custom properties as follows:

Property name Scope Example

Custom.ProVision.SearchTags.Global All tenants GlobalTag:1234

Custom.ProVision.SearchTags.Tenant Tenant TenantTag:Tenant1

Custom.ProVision.SearchTags.BusinessGroup Business Group BusinessTag:BG-A

Custom.ProVision.SearchTags.BluePrint BluePrint NetworkType:VM-1

Custom.ProVision.SearchTags.Mode BluePrint OVERRIDE

Table 1 IP Range filtering tags

All of the properties above are optional and can be combined in two ways (specified by the Mode property):

MERGE: non-null properties from all levels are merged together when performing AIP queries
OVERRIDE: properties defined at the lower level (Global - Tenant - Business Group - Blueprint) override any value above them

The values of the properties can be static dynamic. For example there could be a drop down that would list meaningful names to the customers
(Floor 1, Floor 2, etc) and this can be translated to ProVision tags via vRealize Action item (which can in turn get this information externally or
from vRO configuration element).

Category must be added on the ProVision server.Address Space

1.
2.
3.

4.

1.
2.

3.

Allocate IP address

Allocates one or more IP addresses based on the input properties and returns then to vRealize automation. IP range selection can be further
narrowed down by using custom properties (previous Section).

Custom property determines whether the allocation is DHCP or Static. In case of allocation, Scc.Vm.Orch.NetworknicIndex.EnableDHCP Static
the IP address is allocated from the IP ranges satisfying the conditions in custom properties. The allocation process therefore follows this process:

User requests virtual machine in the vRealize Automation
During resource allocation process, vRealize Automation determines which network profile should be used when searching for IP address
By using network profile, vRealize Automation, determines which IP ranges are available for allocation and passes the info (along with
any custom properties) to the workflow.Allocate
Allocate workflow accepts the parameters from the vRealize Automation and calls the ProVision REST API.
Allocated IP addresses are tagged with a NIC tag, indicating the index of the Network Interface Card that IP address is allocated to. For
example by default, NIC index is prefixed with giving the tags Tags are created automatically on the fly. The NIC NIC: NIC:0,NIC:1, etc.
prefix is defined in configuration element field ProVision Settings NICTagPrefix.

If allocation on ProVision system is successful, workflow returns the allocated IP addresses to vRealize Automation (along with the additional
information, see Table 2.

If is true, the address, static binding is also created.Scc.Vm.Orch.NetworknicIndex.EnableDHCP
If the requested NIC index is that of the default interface (default:0) and the is configured in tenant settings, the DNS A DNSZoneId
record is also pushed to this zone. For the value of DNS A record, the vmName is used.
vRealize Automation configures returned IP addresses and makes configuration changes on the VM

Property Description

SubnetPrefixLength Obtained from IP range

Gateway Obtained from IP range, /32 address tagged as gateway (Tag name configurable)

PrimaryDNS Provided by custom properties

SecondaryDNS

Table 2 Additional allocation information

Property name Scope Example

VirtualMachine.Network.Network#.DNSSuffix BluePrint demo.local

VirtualMachine.Network.Network#.PrimaryDNS BluePrint 10.200.1.11

VirtualMachine.Network.Network#.SecondaryDNS BluePrint 10.200.1.12

VirtualMachine.Network.Network#.PrimaryWINS BluePrint 10.1.3.1

VirtualMachine.Network.Network#.SecondaryWINS BluePrint 10.1.3.2

VirtualMachine.Network.Network#.DNSSearchSuffixes BluePrint demo.local, demo2.local

VirtualMachine.Network.Network#. dhcpStaticRoutes121 BluePrint [{“key”:”10.1.0.0”,”value”: “10.1.0.1”},…]

VirtualMachine.Network.Network#. interfaceMTU26 BluePrint 1500

VirtualMachine.Network.Network#. startDate67 BluePrint 1/1/1900

VirtualMachine.Network.Network#. tftpServerName66 BluePrint Tftp1

VirtualMachine.Network.Network#. tftpServerAddresses150 BluePrint [“10.1.1.1”,,”10.1.1.2”]

VirtualMachine.Network.Network#.nextServer BluePrint 1.1.2.3

VirtualMachine.Network.Network#.autconfigureDNS BluePrint true or false

VirtualMachine.Network.Network#.leaseTime BluePrint 86400

Custom.ProVision.SkipHolding BluePrint true

Release IP address

Workflow is called when vRealize Automation deprovisions the virtual machine. Workflow accepts the IP address that needs to be Release
released and returns it to the free IP Range. Property specifies whether IP address should be released Custom.ProVision.SkipHolding
immediately (value ‘true’) or put in a holding tank (undefined/empty or ‘false’).

If the requested NIC index is that of the default interface (default:0) and the is configured in tenant settings, the corresponding DNS DNSZoneId
A record is also removed from this zone.

Installation
Please contact 6connect and you will then be able to download the plugin. Once downloaded, import the plugin into vRealize Orchestrator.

1.1. Create REST Host for ProVision in vRealize Orchestrator
First, the API endpoint for the ProVision server needs to be created in vRealize Orchestrator. This is performed by executing the Add a REST

 workflows in the folder.Host Library/HTTP-REST/Configuration

Figure 1 Add a REST Host

In the first step fill in the name and the URL of the API endpoint. URL can be one of the following:

Cloud instance: ?https://cloud.6connect.com/tenantId/api/v1/api.php
Local instance: ?https://provision.example.com/api/v1/api.php

1.2. Register ProVision IPAM Endpoint type
In order to be able to create ProVision endpoints, the IPAM Endpoint type needs to be registered in vRrealize Automation. This is performed by
running the workflow located in the folder.Add/Update 6Connect IPAM Endpoint 6Connect/IPAM Service Provider/Configuration

This operation essentially connects the vRA actions described in paragraph Provision IPAM Service Provider with the corresponding workflows in
the vRO.

In the vRA step of the workflow, the vRA server and credentials need to be entered as shown in Figure 2. Credentials entered must have
sufficient permissions on the vRA server. This should normally be if default values were used at installation (SSO administrator@vsphere.local
Default tenant password).

https://cloud.6connect.com/%3ctenantId%3e/api/v1/api.php
https://provision.example.com/api/v1/api.php
mailto:administrator@vsphere.local

Figure 2 Register 6Connect IPAM Type

After this is done, new category will appear in the vRA when creating endpoints.

1.3. Create endpoint
ProVision endpoint can also be created from vRealize Automation web interface, but since custom property is used to specify REST host, it is
simpler to use the workflow .Add/Update 6Connect IPAM Endpoint

In the step, parameter needs to be entered. This must be the same value as tenant URL value of the Common parameters tenantId
corresponding tenant in vRA.

Figure 3 Tenant for IPAM endpoint

In the step of workflow, same information needs to be entered as in Figure 2.vRA Add/Update 6Connect IPAM Endpoint

Figure 4 Adding IPAM Endpoint: Provision API data

In the third step (Figure 3), ProVision API data must be provided:

ProVision API Rest HOST: select the REST Host created in 4.1.

Endpoint name is automatically generated in the followin form: Provision:tenantId

After successfully execution, the ProVision endpoint is created in vRealize Automation and with the following custom property:

Custom.ProVision.RestHOSTId: value contains the GUID of the ProVision REST Host that was selected. This tells the workflows on
which ProVision server to execute API calls
Custom.ProVision.TenantId: contains the tenant to which the endpoint belongs.

1.4. vRO Configuration (ProVision)
vRO configuration is stored in the cofiguration element object which can be accessed by selecting tab in the vRealize Orchestrator Configurations
client. Configuration element is located in Settings/ProVision Settings.

Attribute name Type Default value Description

ApiKey String Value ApiKey for the ProVision API

ApiSecret String Value of ApiSecret for the ProVision API

restHost RESTHost REST host for accessing the ProVision API (default)

skipHolding Boolean True Global skip holding setting when releasing the IP address

Credentials Array Array of [RestHost, ApiKey, ApiSecret] for multi ProVision
environments

AddressSpacesCategorySlug String customer Resource entries category for Address Spaces in the vRealize
Automation

AddressSpaceSectionSlug String resource-holder Resource entries section for Address Spaces in the vRealize
Automation

VirtualMachineSectionSlug String virtual-machine Section in which the virtual machine resource is created

GatewayTag String Gateway Tag that indicates a gateway IP address

NICTagPrefix String NIC: Tag Prefix for NIC that block is assigned to (NIC Index is appended to
this)

tenantSettingsPath String Settings
/TenantSettings

Location where to store tenant settings

AggregateCategorySlug String aggregate Aggregate category slug

AddressSpaceReservationTag String VRA:AS-Reserved Tag to mark the address space IP blocks

AddressSpaceCategoryName String Address Space The name of the address space category

AggregateCategoryName String Aggregate The name of the aggregate category

TenantRootCategorySlug String customer Tenant root resource category

TenantRootSectionSlug String resource-holder Section of tenant root

TenantRootResourceType String entry Resource type for tenant root

AggregateSectionSlug String resource-holder Aggregate section

AggregateResourceType String entry Aggregate resource type

nsxConfigurationElementPath String Settings Path to the nsx configuration element

nsxConfigurationElementName String nsx-configuration-
default

Name of the nsx configuration element

dhcpEnablerPropertyName String Scc.Vm.Orch.Network VM property prefix for DHCP enabled property

MaxRetries Number 3 Maximum number of retries of failed API calls

retrySleepTime Number 3 Sleep time between API call retries

Section 1.0 ProVision Setup
The process of setting up the tenant, tenant aggregates, address spaces and ip blocks assignment is fully automated through the workflows
described below.

1.1. Initial ProVision Setup
Before new tenants can be provisioned in ProVision, basic configuration workflows need to be executed once per ProVision server and vRO
environment.

1.1.1.Tagging the ProVision settings element

In order to simplify searching for the ProVision settings configuration element, the following global tags are added to it:

CONFIGURATION-SYSTEM:PROVISION
CONFIGURATION-TYPE:GLOBAL

Execute workflow once per vRO server when performing upgrade existing plugin installation. The workflow will do OrchTagConfiguration
nothing if tags are already present.

1.1.2.Creating required ProVision objects

In order for multitenancy to function properly, several object need to exist before tenants can be onboarded. This includes:

Aggregate resource category
Address space resource category
Gateway tag

Execute workflow once per ProVision server. If required object are already present, the workflow will do OrchProVisionBaseConfiguration
nothing.

1.2. Create New Tenant
Workflow creates the following objects on ProVision:OrchCreateNewTenant

TenantRoot resource named tenantId
TenantAggregates resource named tenantId-aggregates

Workflow checks if objects above already exist before creating new ones. Workflow creates a configuration element under Settings
and adds the following attributes to it:/TenantSettings: TenantSettings-tenantId

TenantId
RestHostId: RestHostId of the ProVision server for tenant
TenantRootResourceId: Resource id of the TenantRoot resource on ProVision server
TenantAggregateResourceId: Resource id of the TenantAggregates resource on the ProVision server
EndpointId: endpoint name that is created for this tenant
DNSZoneId: DNS zone id (internal Id of ProVision DNS zone – visible in URL as zoneId query parameter)

Figure 5 Create New Tenant input form

The can be repeatedly executed with new input values. If the tenant with the same id already exists, it will update the OrchCreateNewTenant
values for , Any ProVision object that already exists will be left intact.RestHostId DNSZoneId.

1.3. Add Aggregate To Tenant
Workflow adds new aggregate to a tenant.OrchAddAggregateToTenant

Figure 6 Add Aggregate To Tenant

Worflows performs the following:

Creates specified aggregate block.
Assigns it to resource.TenantAggregate
If allow duplicates is set to Yes, it creates aggregate even if the same block already exists (same or other tenant)
If allow duplicates is set to No, it will skip creation if duplicate is detected in same tenant, otherwise it will report error.

1.4. Create Address Space And Assign Block
Workflow creates new address space resource and then assigns specified block to it. If the OrchCreateAddressSpaceAndAssignBlock
address space with the same name already exists, new address block is added to it. This workflow is a composite of the workflows

and which are called in a sequence. They can also be called separately, OrchCreateAddressSpace OrchAssignBlockToAddressSpace
depending on requirements.

Figure 7 OrchCreateAddressSpaceAndAssignBlock step 1

In step 1 of the network parameters are specified:, OrchCreateAddressSpaceAndAssignBlock

tenantId
Tags to filter: a list of tags by which to filter aggregates dropdown
Aggregates from which to assign
IPNetwork: IP network to assign
IP network can be empty, in which case the new network is allocated from a pool of available blocks of a given size (mask)
Mask: size of the network
Gateway: Default getway for a given block.
Gateway can be specified as

IP address literal (e.g. 10.2.1.1) – only if IPNetwork parameter is specified
IP address index: Ordinal number of the ip address in a give block size (e.g. IPNetwork = 10.1.1.0/24 and gateway = 65 gives
gateway address of 10.1.1.65)
edgeId: Edge id for DHCP reservation (NSX DLR)

Figure 8 OrchCreateAddressSpaceAndAssignBlock step 2

In step 2, DNS parameters are specified. These values are stored in the allocated IP block and are returned to vRA when is requested. Allocate
These values can be overridden for each vNIC separately by values of the following properties:

VirtualMachine.Network.Network#.DNSSuffix
VirtualMachine.Network.Network#.PrimaryDNS
VirtualMachine.Network.Network#.SecondaryDNS
VirtualMachine.Network.Network#.PrimaryWINS
VirtualMachine.Network.Network#.SecondaryWINS
VirtualMachine.Network.Network#.DNSSearchSuffixes

If any of these values are not present, the value from IP block is used as a default.

In step 3, additional DHCP options can be specified in form of key-value pairs.

1.5. Delete Address Space
Workflow removes address space and releases all of its blocks back to aggregate.OrchDeleteAddressSpace

Figure 9 Delete Address Space

tenantId
Address Space which to remove: drop down list displays all the address spaces of the specified tenant
Address Space Id: Address space resource id can also be specified if running in none interactive mode
Address Space Slug: Address space alphanumeric Id. This is an Id of property of the address space on the addressSpaceExternalId
vRA networkProfile.
Ignore any leftover assignments and release addresses: If set to , any assigned IP addresses are unassigned before removing Yes
address space. If set to No and there are still IP addresses assigned (apart from network address, broadcast address and gateway), the
workflow throws an error

When IP blocks are removed, the reaggregation is performed up to maximum blocksize possible.

1.6. Remove IP Block From Address Space
Workflow unassigns a single IP block from address space and releases it back to parent aggregate. OrchRemoveIPBlockFromAddressSpace
Reaggregation is performed up to a maximum possible block size.

Figure 10 Remove IP Block From Address Space

tenantId
Address space from which to remove: A drop down list displays all of tenant address blocks
IPNetwork: A drop down list displays all IP blocks that are assigned to selected address space
AddressSpaceId: address space resource id (for non-interactive execution)
Address BlockId: address block id (for non-interactive execution)
Ignore any leftover assignments and release addresses: If set to , address block is aggregated regardless of assignments. If set to Yes
No and there are still IP addresses assigned (apart from network address, broadcast address and gateway), the workflow throws an error

1.7. Remove Aggregate From Tenant
Workflow removes an aggregate from a tenant.OrchRemoveAggregateFromTenant

Figure 11 Remove Aggregate From Tenant

tenantId
Aggregate to remove: a drop down list display a list of tenant aggregates
Aggregate Id: aggregate block id (for non-interactive execution)
Ignore any leftover assignments and release addresses: If set to , aggregate is deleted regardless of assignments. If set to No and Yes
there are still IP blocks assigned the workflow throws an error

1.8. Delete Tenant
Workflow removes tenant resources from the ProVision server.OrchDeleteTenant

Figure 12 Delete Tenant

tenantId
Ignore assigned resources: If set to , tenant is deleted regardless of assignments. If set to No and there are still IP blocks Yes
assigned the workflow throws an error.

Workflow tags a configuration element under with new tag value: CONFIGURATION-STATUS:Settings/TenantSettings: TenantSettings-tenantId
DELETED

Section 2.0 vRealize Automation Setup
This section summarizes which custom properties and property groups need to be created in vRealize Automation. In order to simplify creation of
properties, they are provided in a form of files that can be imported with the help of cloud client application (.zip https://code.vmware.com/tool

)/cloudclient/4.1.0

https://code.vmware.com/tool/cloudclient/4.1.0
https://code.vmware.com/tool/cloudclient/4.1.0

Cloud client is a java CLI application that is started with the following command :

cloudclient.bat (or cloudclient.sh if running on Linux)

In order to login to the vRA server execute the following command from cloud client CLI:

vra login userpass --tenant <tenant>

To import the .zip file, execute the following:

vra content import --path <path to zip file> --resolution OVERWRITE --precheck ON

2.1. Custom properties
Properties are optional component that needs to be created if more granular selection of IP ranges is needed within one address space (base on
the Tenant, BusinessGroup). In the simple scenario, where one address space contains one IP range they are normally not needed. In order for
properties to take place, they need to be attached to the blueprint.

The following properties need to be created in Administration - Property dictionary - Property definitions:

Custom.ProVision.SearchTags.Global
Custom.ProVision.SearchTags.Tenant
Custom.ProVision.SearchTags.BluePrint
Custom.ProVision.SearchTags.Mode
Custom.ProVision.SearchTags.Tenant
Custom.ProVision.SkipHolding

2.2. Property groups
The following properties need to be created in Administration - Property dictionary - Property groups:

CustomProVisionTenantPropertyGroup

2.3. Business group properties
The following property must be created on any business group within tenant: Administration - Users&Groups - Business Groups:

Custom.ProVision.SearchTags.BusinessGroup

2.4. DHCP Subscriptions
DCHP subscription workflows are used to push the DHCP information on NSX during the VM provisioning phase. There are two subscription
workflows for this purpose:

OrchDHCPSubscriptionAllocate
Triggered in phase ‘EVENT’ and Life Cycle Event: ‘CloneWorkflow.CloneMachine.EVENT.OnCloneMachineComplete’ when
MAC address becomes known
Pushes the IP address and DHCP options for each NIC that is DHCP enabled
DHCP enabled NIC must have property ‘Scc.Vm.Orch.Network#.EnableDHCP’ set to ‘true’
OrchDHCPSubscriptionRelease

Triggered in phase ‘PRE’, state ‘VMPSMasterWorkflow32.Disposing’
Removes the DHCP binding for all DHCP enabled NICs

DHCP Subscriptions need to be imported for each tenant separately. Run the workflow 6Connect/Operations/OrchDHCPSubscriptionImporter
and provide a as a parameter.tenantId

The workflow will automatically read the subscriptions stored in resource element and import them 6Connect-subscriptions/dhcp-subscriptions
into vRA.

	ProVision-vRA-Plugin

